
JOURNAL OF CHEMICAL PHYSICS VOLUME 110, NUMBER 10 8 MARCH 1999
Semiclassical study of electronically nonadiabatic dynamics in the
condensed-phase: Spin-boson problem with Debye spectral density

Haobin Wang, Xueyu Song,a) David Chandler, and William H. Miller
Department of Chemistry, University of California, and Chemical Sciences Division,
Lawrence Berkeley National Laboratory, Berkeley, California 94720

~Received 20 August 1998; accepted 4 December 1998!

The linearized semiclassical initial value representation~LSC-IVR! @H. Wang, X. Sun and W. H.
Miller, J. Chem. Phys.108, 9726 ~1998!# is used to study the nonadiabatic dynamics of the
spin-boson problem, a system of two electronic states linearly coupled to an infinite bath of
harmonic oscillators. The spectral density of the bath is chosen to be of the Debye form, which is
often used to model the solution environment of a charge transfer reaction. The simulation provides
a rather complete understanding of the electronically nonadiabatic dynamics in a broad parameter
space, including coherent to incoherent transitions along all three axes~the T-axis, theh-axis, and
the vc-axis! in the complete phase diagram and the determination of rate constants in several
physically interesting regimes. Approximate analytic theories are used to compare with the
simulation results, and good agreement is found in the appropriate physical limits. ©1999
American Institute of Physics.@S0021-9606~99!51010-6#
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I. INTRODUCTION

Although considerable progress has been made ove
last few years in the rigorous quantum mechanical calc
tion of thermal ~also microcanonical! rate constants for
chemical reactions,1 these methods are at present applica
without approximation to molecular systems involving on
a few~3–4! atoms. The primary reason is that the finite ba
used in such calculations grows exponentially as the num
of degrees of freedom increases. Some kind of approxi
tion is thus necessary in order to deal with complex mole
lar systems, those with many degrees of freedom. An att
tive approach, the semiclassical initial value representat2

~SC-IVR!, is now undergoing a rebirth of interest3–10 in this
regard. The SC-IVR replaces the quantum mechanical t
in the formally exact rate expressions by a phase space
erage over the initial conditions of classical trajectories,
which Monte Carlo techniques can be used. The integran
the phase space average is oscillatory, however, and it i
active research problem to develop more efficient algorith
to deal with this aspect of an SC-IVR calculation.

In lieu of a full SC-IVR treatment, a linearized approx
mation to it~the LSC-IVR! was suggested in a recent pape11

and found to give excellent results for a model conden
phase problem, a one-dimensional double well potential
early coupled to an infinite bath of harmonic oscillators. T
approximation, which linearizes the phase difference in
integrand, leads to an extremely simple computational p
cedure, one that is only slightly more expensive than a r
tine classical molecular dynamics simulation. It has a
been shown12 that the LSC-IVR can be applied to electron
cally nonadiabatic processes by using the Meyer–Mi
model13,14 to provide a dynamically consistent treatment

a!Current address: Department of Chemistry, Iowa State University, Am
IA 50011.
4820021-9606/99/110(10)/4828/13/$15.00
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electronic and nuclear degrees of freedom. For the th
model nonadiabatic scattering problems used by Tully15 to
test surface-hopping models, it was found that LSC-IVR p
formed quite well, even correctly describing Stuckelberg
cillations ~interferences between nonadiabatic transition!.
The LSC-IVR was also applied to the spin-boson problem12

i.e., a two level system linearly coupled to an infinite bath
harmonic oscillators,16–18 and it reproduced quite accurate
quantum path integral results19,20 for the case of an Ohmic
~with an exponential cutoff! bath spectral density.

These encouraging results demonstrate the useful
and feasibility of the LSC-IVR for treating complex molecu
lar systems. Previous work21 has established the fact that th
LSC-IVR describes the short time~of orderb\) behavior of
quantum time correlation functions correctly—thus acc
rately describing quantum effects~tunneling, etc.! in a tran-
sition state theory approximation22 for reaction rate
constants—but the longer time dynamics is essentially
given by classical mechanics. The success in previous ap
cations of the LSC-IVR suggests that quantum cohere
effects, which are often quite important for a small molecu
gas phase reaction, are quenched by the condensed p
environment. Moreover, it will be shown in this paper that
the nonadiabatic states are treated via the dynamically c
sistent method suggested by McCurdy, Meyer a
Miller,13,14 the exact quantum coherence effects for the t
level system are fully reproduced by the LSC-IVR appro
mation. Bearing in mind its simplicity and ease of practic
implementation, the LSC-IVR is expected to be applicable
a wide class of complex chemical reactions.

In this paper, we apply the LSC-IVR approximation
the popular spin-boson problem, a system of two electro
states linearly coupled to an infinite bath of harmonic os
lators, but with a significantly different bath spectral dens

s,
8 © 1999 American Institute of Physics
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than considered before.12 Specifically, the two-state~diaba-
tic! representation of the Hamiltonian is

Ĥ5FHB2Hc D

D HB1Hc
G , ~1.1a!

where the bath HamiltonianHB and the system-bath cou
pling Hc are written conveniently in terms of the mas
weighted coordinates and momenta as

HB5(
j

1
2 ~Pj

21v j
2Qj

2!, ~1.1b!

Hc5(
j

cjQj . ~1.1c!

The central property of the bath is its spectral density17

J~v!5
p

2(
j

cj
2

v j
d~v2v j !, ~1.2!

which characterizes the effect of the bath on transitions
tween the electronic states~e.g., electron transfer in the con
densed phase!. In this work, the spectral density is chosen
the so-called Debye form

JD~v!5
hvcv

v21vc
2

. ~1.3!

@Equation~1.3! is actually of Ohmic form with a Lorentzian
cutoff; the name convention ‘‘Debye’’ is adopted here b
cause the condensed phase media characterized by this
tral density exhibits Debye dielectric relaxation.23# The two
parameters which characterize the spectral density, the c
acteristic bath frequencyvc and the coupling strengthh, are
related to other physical quantities: 1/vc5tL is the longitu-
dinal relaxation time, and 2h is the reorganization energy i
charge transfer theory. As shown in Fig. 1, the Debye sp
tral density spans a much broader frequency range than
usual Ohmic case~with an exponential cutoff!

JO~v!5hve2v/vc, ~1.4!

FIG. 1. Debye~solid line! and Ohmic~dashed line! spectral densities.
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and thus presents a greater challenge for numerical sim
tions.

Spectral densities of real chemical/biological systems
of course much more complicated, but they should never
less have some general features in common: at small
quencies, they scale linearly versusv @i.e., the Ohmic form
J(v);hv#, whereas for large frequencies they should dec
in the form of a power law@i.e., J(v);h(vc /v)n, n.0#.
Despite its simple form, the Debye spectral density captu
these essential features. Theoretical/computational
proaches capable of treating it are thus expected to be a
cable to more complex realistic spectral densities. It is
hope, therefore, that the work presented in this paper
permit critical examinations of several approximate analy
theories for charge transfer processes and also foster fu
analytical development.

Section II first summarizes the LSC-IVR procedure f
the calculation of the time correlation functions, and Sec.
gives specifics of the present calculation for the spin-bo
problem. Section IV discusses the results and their comp
sons with approximate analytic theories, and Sec. V c
cludes.

II. SUMMARY OF THEORY

In the semiclassical initial value representation2–10 ~SC-
IVR!, the time evolution operator for af-dimensional system
is approximated by

e2 iĤ t/\5E dp0E dq0FdetS ]qt

]p0
D /~2ip\! f G1/2

3eiSt~p0,q0!/\uqt&^q0u, ~2.1!

whereqt(p0,q0) is the trajectory determined by initial con
ditions (p0,q0) and St(p0,q0) the classical action integra
along it. @The phase factore2 ipn t/2, wheren t is the Maslov
index, is included in Eq.~2.1! as part of the pre-exponentia
square root.# Thus, for the general time correlation functio
of the form

CAB~ t !5tr@ÂeiĤ t/\B̂e2 iĤ t/\#

5E dqE dq8E dq0E dq08^q0uÂuq08&

3^q08ue
iĤ t/\uq8&^q8uB̂uq&^que2 iĤ t/\uq0&, ~2.2!

the SC-IVR result gives the following general result:

CAB~ t !5~2p\!2 fE dq0E dq08E dp0E dp08^q0uÂuq08&

3^qt8uB̂uqt&exp$ i @St~p0,q0!2St~p08,q08!#/\%

3FdetS ]qt

]p0
D G1/2FdetS ]qt8

]p08
D G 1/2

, ~2.3!

whereqt5qt(p0,q0) andqt85qt(p08,q08).
The linearized SC-IVR~LSC-IVR! approximation is ob-

tained by making a sum and difference change of integra
variables,
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p̄05
1
2 ~p01p08!, Dp05p02p08, ~2.4a!

q̄05
1
2 ~q01q08!, Dq05q02q08, ~2.4b!

and then expanding all relevant quantities to the first orde
the difference variablesDp0 andDq0:

qt~p0,q0!.q̄t1
]q̄t

]p̄0

•

Dp0

2
1

]q̄t

]q̄0
•

Dq0

2
, ~2.5a!

qt8~p08,q08!.q̄t2
]q̄t

]p̄0
•

Dp0

2
2

]q̄t

]q̄0
•

Dq0

2
, ~2.5b!

]qt~p0,q0!

]p0
.

]qt8~p08,q08!

]p08
.

]q̄t

]p̄0
, ~2.5c!

]qt~p0,q0!

]q0
.

]qt8~p08,q08!

]q08
.

]q̄t

]q̄0
, ~2.5d!

St~p0,q0!2St~p08,q08!.
]St~ p̄0,q̄0!

]p̄0
•Dp01

]St~ p̄0,q̄0!

]q̄0
•Dq0

5p̄t•
]q̄t

]p̄0
•Dp01p̄t•

]q̄t

]q̄0
•Dq02p̄0

•Dq0, ~2.5e!

whereq̄t5qt(p̄0,q̄0) and p̄t5pt(p̄0,q̄0). Our abbreviated no-
tation is, for example, that]q̄t /]p̄0 is the matrix
(]q̄t /]p̄0) i ,i 85]q̄i ,t /] p̄i 8,0 . The integration over the differ
ence variablesDp0 andDq0 can now be carried out11 in Eq.
~2.3! to give the final result of the LSC-IVR,

CAB~ t !5~2p\!2 fE dq0E dp0A
w~q0,p0!B

w~qt ,pt!* ,

~2.6!

where we have also dropped the ‘‘bars’’ overp0 andq0 since
they no longer serve any purpose.Aw(Bw) is the Wigner/
Weyl transform24 of the operatorÂ(B̂), which is defined as

Aw~q,p!5E dDqe2 ip–Dq/\K q1
Dq

2
uÂuq2

Dq

2 L . ~2.7!

If operatorsÂ and B̂ are Hermitian~i.e., they correspond to
some physical observable!, their Wigner transforms are rea

Aw~q,p!* 5Aw~q,p!, Bw~q,p!* 5Bw~q,p!, ~2.8!

and since this is true for all operators of interest to us
drop the complex-conjugate sign in Eq.~2.6!.

It is clear that the linearized semiclassical initial val
representation~LSC-IVR!, Eq. ~2.6!, is much simpler than
the full-blown SC-IVR. The real time propagation is pure
classical, with the oscillatory part of the integrand merg
into the Wigner distribution functions~the weighting func-
tions! Aw(q0,p0) and Bw(qt,pt). The procedure is only
slightly more difficult than a standard classical trajectory c
culation. Its limitation, as has been discussed elsewhere,21 is
that quantum effects in the dynamics are accurately
scribed only for short time, with the longer time dynami
given by classical rather than quantum mechanics. For c
in

e

d

-

e-

-

plex molecular systems, such quantum interference effec
the long time dynamics are often quenched and the LSC-I
therefore expected to provide an adequate description.

It should also be noted that Eq.~2.6!, which we refer to
as the LSC-IVR, is the classical limit of the Wigner equiv
lent expression of the trace, a result obtained previously b
variety of approaches.22,25–28The reason that we emphasiz
that this result arises from linearizing the SC-IVR expre
sion, Eq.~2.3!, is that this suggests how one can in princip
improve the LSC-IVR, i.e., by going beyond this linearize
approximation.

So far we have assumed that the Hamiltonian of
problem has a classical analog, as is the case for reac
occurring on a single electronic potential surface. The sp
boson problem studied in this paper, however, is anonadia-
batic process involving two electronic states/potential ene
surfaces. The LSC-IVR formalism, Eq.~2.6!, is thus not di-
rectly applicable to the Hamiltonian~1.1! due to its dis-
cretized form. Common approximations for treating nonad
batic dynamics are the time-dependent self-consistent fi
~TDSCF! model29 and the surface hopping model.30 A more
dynamically consistent treatment of electronic and nucl
degrees of freedoms can be obtained, however, by follow
the work of McCurdy, Meyer, and Miller,13,14 and introduc-
ing classical degrees of freedom that model the finite num
of discrete electronic states, the so-called Meyer–Mil
~MM ! classical electron analog model. In the Cartesian v
sion of the MM-representation, the Hamiltonian for a
n-state problem is the following harmonic oscillato
Hamiltonian,13,14,9d,31

H~x,p!5 (
k51

n
1

2
~xk

21pk
221!Hkk

1 (
k51

n

(
l 5k11

n

Hk,l~xkxl1pkpl !, ~2.9!

whereHkk andHkl are the diagonal and off-diagonal matr
elements which define the discrete Hamiltonian. Since
total number of quanta of excitation in this system ofn har-
monic oscillators is a constant of the motion, then ‘‘elec-
tronic’’ states that correspond to one quantum of excitat
in one of the modes and no quanta in all the others, form
complete set within this subspace. The ‘‘electronic’’ wa
functions for thesen states are thus given by (m5v5\51)

Fk~x!5f1~xk! )
l 51,lÞk

n

f0~xl !, ~2.10a!

where

f0~x!5
1

p1/4
e2x2/2, ~2.10b!

f1~x!5
A2

p1/4
xe2x2/2. ~2.10c!

It is easily verified that$Hkk8%, the matrix of the MM-
Hamiltonian, Eq.~2.9! in the n-dimensional basis of Eq
~2.10!, is precisely the original diabatic electronic matrix.
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Applying Eq. ~2.9! to Eq. ~1.1! yields the continuous
MM-representation for the spin-boson problem

H~x,p,Q,P!5D~p1p21x1x2!1~h11h2!HB1~h22h1!Hc ,

~2.11a!
where

h15 1
2 ~p1

21x1
221!, h25 1

2 ~p2
21x2

221!, ~2.11b!

and the wave functions for the two diabatic states are

F1~x1 ,x2!5f1~x1!f0~x2!, F2~x1 ,x2!5f0~x1!f1~x2!.
~2.12!

It is then straightforward to apply the LSC-IVR formalism
the spin-boson problem.

In this paper, two correlation functions are used to stu
the dynamics of the spin-boson problem. For the purpos
studying the time evolution of the density matrix and
coherent to incoherent transition, we evaluate the populat
spin correlation functionP(t), defined as17

P~ t !5
1

QB
tr@ r̂11e

bĤBeiĤ t/\ŝze
2 iĤ t/\#

[P1←1~ t !2P2←1~ t !, ~2.13!

where

r̂115uF1&^F1u, ~2.14a!

ŝz5uF1&^F1u2uF2&^F2u, ~2.14b!

QB5tr@e2bĤB#. ~2.14c!

The assumption in evaluatingP(t) is that the interaction
between the system and the bath is switched on att50, and
the initial population is on state 1, i.e., the initial dens
matrix is

r̂~0!5 r̂11e
2bĤB. ~2.15!

P(t) is thus unity att50 @sinceP1←1(0)51 andP2←1(0)
50# and decays to zero in the presence of a finite electro
nuclear coupling since the two degenerate electronic st
have equal population at equilibrium (t→`). It is easy to
apply the general LSC-IVR result of Eq.~2.6! to express
P(t) as follows:

P~ t !5
1

~2p\!N12QB
E dQ0E dP0

3E dx0E dp0r11
w ~x0,p0!rB

w~Q0,P0!sz
w~xt ,pt!,

~2.16!

whererB
w(Q0,P0) is the Wigner transform ofe2bĤB, andN

the number of bath degrees of freedom.
For the purpose of calculating the rate constant,

found it most convenient to apply the flux correlation fun
tion formalism.32,33 Thus, the thermal rate constant is e
pressed via a flux-side correlation function,32b

k~T!5Qr~T!21 lim
t→tp

Cf s~ t !, ~2.17!
y
of

n-

c-
es

e

wheretp is the ‘‘plateau’’ time, and

Cf s~ t !5tr@ F̂~b!eiĤ t/\ĥe2 iĤ t/\#, ~2.18!

F̂(b) is the Boltzmannized flux operator

F̂~b!5e2bĤ/2F̂e2bĤ/2, ~2.19a!

F̂5
i

\
@Ĥ,ĥ#, ~2.19b!

and ĥ is the operator that projects the wave function to t
product side. Similar to the above analysis of the populati
spin correlation functionP(t), the LSC-IVR approximation
for the flux-side correlation functionCf s(t) is given by

Cf s~ t !5~2p\!2N22E dQ0E dP0

3E dx0E dp0Fb
w~x0,p0;Q0,P0!h

w~xt ,pt ,Qt ,Pt!.

~2.20!

If the reaction is adiabatic~i.e., occurs on a single elec
tronic potential surface!, the thermal rate constant of Eq
~2.17! has a similar LSC-IVR expression for the flux-sid
correlation function

Cf s~ t !5~2p\!2 fE dq0E dp0Fb
w~q0,p0!h

w~qt,pt!,

~2.21!

where f is number of degrees of freedom for the molecu
system and (q,p) are the phase space variables. In previo
work,11 the projection operatorĥ is chosen as the step func
tion of the reaction coordinates, ĥ5ĥ@ ŝ(q)#, wheres(q) is
some function of the coordinatesq that is positive~negative!
on the product~reactant! side of the dividing surface. It is
easy to see that the Wigner transformhw(qt,pt) is simply the
step function of the reaction coordinate

hw~qt,pt!5h@s~qt!#, ~2.22!

and Eq.~2.21! reduces to

Cf s~ t !5~2p\!2 fE dq0E dp0Fb
w~q0,p0!h@s~qt!#,

~2.23!

which is Eq. ~3.14! of Ref. 11 if the factor (2p\)2 f is
merged into the Wigner distribution functionFb

w(q0,p0).

III. DETAILS OF THE CALCULATION

A. Bath discretization

To treat the continuum of harmonic bath modes we
troduce a density of frequenciesr(v) and discretize the con
tinuum of frequencies as follows:

E
0

v j
dvr~v!5 j , j 51, . . . ,N. ~3.1a!

The coupling constantcj for each frequencyv j is then given
by
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cj
25v j

2

p

JD~v j !

r~v j !
~3.1b!

The precise functional form ofr(v) does not affect the fina
answer if enough bath modes are included, but it does af
the efficiency in solving the problem. This is particularly tru
for the Debye spectral density since it covers such a br
frequency range. We have found that choosing the densit
frequencies as

r~v!5
N

2Avvmax

, ~3.2!

gives satisfactory description of the bath with 1000 b
modes. The discrete frequencies, according to Eqs.~3.1a!
and ~3.2!, are

v j5
j 2

N2
vmax, j 51, . . . ,N, ~3.3!

and the system-bath couplingcj is calculated from Eq.
~3.1b!. The maximum frequencyvmax is set to be 20– 200vc

depending on specific parameters in the simulation. In
case, the reorganization energy

Er52h.2(
j

N cj
2

v j
2

~3.4!

was accurately reproduced.
It should be clear that nothing in our approach takes

explicit advantage of the fact that the bath is harmonic a
that the coupling is linear~as is necessary, for example,
quantum path integral calculations19,20!. It would thus be
possible to carry out the present LSC-IVR calculations
anharmonic baths and nonlinear coupling with essentially
increase in effort.

B. The Wigner distribution functions

The Wigner transform of the various operators defined
Sec. II can be obtained via straightforward integration,
which we will give the final expressions and leave the det
to the reader~hereafter\51). For the population-spin cor
relation functionP(t), Eq. ~2.16!, the Wigner distribution
functions are

r11
w ~x0,p0!5E dDxe2 ip0–DxK x01

Dx

2 Ur̂11Ux02
Dx

2 L
58~x10

2 1p10
2 2 1

2!e
2~x10

2
1p10

2
!e2~x20

2
1p20

2
!, ~3.5a!

rB
w~Q0,P0!5E dDQe2 iP0–DQK Q01

DQ

2 Ue2bĤBUQ02
DQ

2 L
5)

j

N
1

cosh~bv j /2!

3expF2
2 tanh~bv j /2!

v j
S Pj 0

2

2
1

1

2
v j

2Qj 0
2 D G ,

~3.5b!
ct

d
of

h

y

y
d

r
o

n
r
s

sz
w~xt ,pt!5E dDxe2 ipt–DxK xt1

Dx

2 UŝzUxt2
Dx

2 L
58~x1t

2 1p1t
2 2x2t

2 2p2t
2 !e2~x1t

2
1p1t

2
!e2~x2t

2
1p2t

2
!.

~3.5c!

For the flux-side correlation functionCf s(t) in Eq. ~2.18!,
the projection operatorĥ is naturally defined as

ĥ5 r̂225uF2&^F2u ~3.6!

~i.e., it projects wave functions onto state 2!, and the result-
ing flux operator is

F̂5 i @Ĥ,ĥ#5 iD~ uF1&^F2u2uF2&^F1u!. ~3.7!

The Wigner distribution function for the projection operat
in Eq. ~2.20! is simply

hw~xt ,pt!5E dDxe2 ipt–DxK xt1
Dx

2 UĥUxt2
Dx

2 L
58~x2t

2 1p2t
2 2 1

2!e
2~x1t

2
1p1t

2
!e2~x2t

2
1p2t

2
!. ~3.8!

There is, however, no analytic result for the Wign
transform of the Boltzmannized flux operator,F̂(b) in Eq.
~2.19a!. The simplest approximation, similar to the assum
tion in defining the population-spin correlation functio
P(t), is

F̂~b!5e2bĤ/2F̂e2bĤ/2.@e2bĤs/2F̂e2bĤs/2#e2bĤB,
~3.9!

where we denote the ‘‘system’’ Hamiltonian as

Ĥs5D~ uF1&^F2u1uF2&^F1u!, ~3.10!

and it is easy to verify that

e2bĤs/2F̂e2bĤs/25F̂, ~3.11!

so that Eq.~3.9! reduces to

F̂~b!5F̂e2bĤB. ~3.12!

Thus the Wigner distribution function forF̂(b) is

Fb
w~x0 ,p0 ;Q0,P0!5Fw~x0,p0!rB

w~Q0,P0!, ~3.13a!

whererB
w(Q0,P0) is given in Eq.~3.5b!, and

Fw~x0,p0!5E dDxe2 ip0–DxK x01
Dx

2 UF̂Ux02
Dx

2 L
516D~x20p102x10p20!e

2~x10
2

1p10
2

!e2~x20
2

1p20
2

!.

~3.13b!

A better approximation is based on the split-operator
proach of the Boltzmann operator

e2bĤ/2.e2bĤs/4e2bĤBc/2e2bĤs/4, ~3.14a!

where we have denoted
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ĤBc5FHB2Hc 0

0 HB1Hc
G

5~HB2Hc!uF1&^F1u1~HB1Hc!uF2&^F2u.

~3.14b!

After some manipulations, we arrive at the final form of t
Wigner distribution function forF̂(b)

Fb
w~x0,p0;Q0,P0!

5Gw~x0,p0;Q0,P0!Z
w~x0,p0;Q0,P0!, ~3.15a!

Gw~x0,p0;Q0,P0!516De2~x10
2

1p10
2

1x20
2

1p20
2

!

3)
j

1

cosh~uj!
e2tanh~uj !~Pj 0

2
1v j

2Qj 0
2

!/v j ,

~3.15b!

Zw~x0,p0;Q0,P0!

5Aw~P0!FsinhS bD

2 DBw~x0,p0!

2coshS bD

2 DCw~x0,p0!G1Dw~P0!E
w~x0,p0!,

~3.15c!

Aw~P0!52H)
j

e[cj
2/~2v j

2
!][ b22 tanh~uj !/v j ] J

3sinH (
j

F 1

cosh~uj !
21G2cj

v j
2

Pj 0J , ~3.15d!

Bw~x0,p0!5 1
2 ~x10

2 1p10
2 1x20

2 1p20
2 21!, ~3.15e!

Cw~x0,p0!5x10x201p10p20, ~3.15f!

Dw~P0!5H)
j

e[cj
2/~2v j

2
!][ b22 tanh~uj !/v j ] J

3cosH (
j

F 1

cosh~uj !
21G2cj

v j
2

Pj 0J , ~3.15g!

Ew~x0,p0!5x20p102x10p20, ~3.15h!

and

uj5bv j /2. ~3.15i!

It should be emphasized that the Wigner distributi
function for the Boltzmannized flux operato
Fb

w(x0,p0;Q0,P0), is only used for weighting initial condi-
tions of classical trajectories; the real time dynamics is s
solved with the full Hamiltonian. The above approximatio
for Fb

w(x0,p0;Q0,P0) are satisfactory for cases considered
this paper. There are of course more accurate methods~e.g.,
see Ref. 35! of evaluatingFb

w(x0,p0;Q0,P0) or equivalently,
the overall partition function for the spin-boson syste
which should be incorporated for calculations that consi
lower temperatures than treated herein.
ll

,
r

C. Equations of motion

Hamilton’s equations of motion for the MM
representation of the spin-boson problem, Eq.~2.11!, are
straightforward

ẋ15
]H

]p1
5p1~HB2Hc!1p2D, ~3.16a!

ṗ152
]H

]x1
52x1~HB2Hc!2x2D, ~3.16b!

ẋ25
]H

]p2
5p1D1p2~HB1Hc!, ~3.16c!

ṗ252
]H

]x2
52x1D2x2~HB1Hc!, ~3.16d!

Q̇j5
]H

]Pj
5Pj~h11h2!, ~3.16e!

Ṗj52
]H

]Qj
52v j

2Qj~h11h2!2cj~h22h1!. ~3.16f!

Unfortunately, one encounters numerical problems when
rectly integrating the above equations because the termHB

5( j
1
2 (Pj

21v j
2Qj

2) has a large magnitude in Eqs.~3.16a!–
~3.16d!, and this gives rise to rapid changes in the variab
$x1 ,p1 ,x2 ,p2%versus time. As a result, Eqs.~3.16! are a stiff
set of equations.

This problem can be resolved by changing the integ
tion variables from$x1 ,p1 ,x2 ,p2% to $h11h2 ,h12h2 ,p2x1

2p1x2 ,p1p21x1x2%. Equations~3.16~a!–~3.16d! are then
replaced by the following equivalent set of equations:

d

dt
~h11h2!50, ~3.17a!

d

dt
~h12h2!52D~p2x12p1x2!, ~3.17b!

d

dt
~p2x12p1x2!522D~h12h2!22Hc~p1p21x1x2!,

~3.17c!

d

dt
~p1p21x1x2!52Hc~p2x12p1x2!. ~3.17d!

Equations~3.17! not only solve the stiff equation problem
~the termHB is no longer present!!, but also closely relate
the integration variables to physical quantities:h11h2 rep-
resents the total population in the two states, which is ob
ously a conserved quantity@as seen from Eq.~3.17a!#; h1

2h2 represents population difference between state 1 an
p2x12p1x2 relates to the flux from one state to another; a
p1p21x1x2 represents the off-diagonal terms in the MM
Hamiltonian.

IV. RESULTS AND DISCUSSION

Before considering application of the LSC-IVR to th
spin-boson problem of Eq.~1.1!, it is of pedagogical interes
to show how it applies to the isolated two level system,
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Ĥ5F e D

D 2eG ; ~4.1!

we thus remove the bath from the spin-boson Hamiltoni
Eq. ~1.1!, and seteÞ0 as the bias to differentiate the ener
levels of the two states. This is a similar case to the previ
study21 of a one-dimensional double well problem, where t
correlation functions display coherent oscillations betwe
reactants and products.

The Meyer–Miller representation for Eq.~4.1! is

H5
e

2
~p1

21x1
22p2

22x2
2!1D~p1p21x1x2!, ~4.2!

and we consider, for example, the population-spin corre
tion function

P~ t !5tr@ r̂11e
iĤ tŝze

2 iĤ t#, ~4.3!

via the LSC-IVR approximation,

P~ t !5
1

~2p!2E dx10E dp10E dx20E dp20

3r11
w ~x10,p10,x20,p20!sz

w~x1t ,p1t ,x2t ,p2t!, ~4.4!

wherer11
w andsz

w are given in Eqs.~3.5a! and~3.5c!, respec-
tively. Hamilton’s equations of motion for Eq.~4.2! are solv-
able:

x1t5cos~Ae21D2t !x101
sin~Ae21D2t !

Ae21D2
~p10e1p20D!,

~4.5a!

p1t5cos~Ae21D2t !p102
sin~Ae21D2t !

Ae21D2
~x10e1x20D!,

~4.5b!

x2t5cos~Ae21D2t !x201
sin~Ae21D2t !

Ae21D2
~2p20e1p10D!,

~4.5c!

p2t5cos~Ae21D2t !p201
sin~Ae21D2t !

Ae21D2
~x20e2x10D!.

~4.5d!

Using Eqs.~4.5!, the phase space integration in Eq.~4.4! can
now be carried out over the initial condition variabl
(x10,p10,x20,p20) to give

P~ t !512
2D2sin2~Ae21D2t !

e21D2
, ~4.6!

which is recognized to be the exact quantum mechanica
sult.

Equation~4.6! is the result of the spin-boson proble
@Eq. ~1.1!# when the system-bath couplingHc is zero~with
the trivial modificatione50). In this case, the population
spin correlation functionP(t) exhibits pure coherent motion
between the two states, and the rate constant from state
2 is not defined. As the coupling increases,P(t) will un-
dergo a coherent to incoherent transition and may eventu
reach the form of an exponential decay for which a r
,

s

n

-

e-

to

lly
e

constant can be defined. It is possible that other parame
also play important roles in the coherent to incoherent tr
sition. Below, we will discuss such behavior in the comple
parameter space.

A. Coherent to incoherent transitions

1. Along the h-axis

This is the most obvious axis for observing the transiti
from coherent to incoherent behavior. The parameterh mea-
sures the coupling strength between the bath and the
level system~also recall that 2h is the reorganization en
ergy!. Therefore ash increases, the energy exchange b
tween the system and the bath becomes more efficient so
the bath more effectively damps the coherent motion of
two level system. Figure 2 shows the population-spin cor
lation function, P(t), for the parametersbD50.1 and
vc /D50.25. As seen clearly in the figure, there are stro
coherent features for the weak coupling case ofh/D50.5,
less so for a stronger couplingh51. It reaches the transition
boundary betweenh/D52 and h/D55, and one sees no
remaining coherent features for the strong coupling case
h/D510. It should be pointed out that althoughh/D510
displays totally incoherent dynamics, it does not give t
golden rule rate constant for the parameters used in Fig
Rather, it gives a rate that agrees with Zusman’s solv
dynamical model.34 Such results will be discussed more ful
below.

2. Along the T-axis

This is also an interesting parameter for observing
coherent to incoherent transition. At low temperature,
total number of states accessible for the bath is limited
so is energy exchange between the system and the bath
the temperature increases, more bath states participate i
energy transfer process, which tends to destroy the cohe
motion of the two level system. Figure 3 showsP(t) for
different temperatures~here we usebD as a measure of tem
perature!. The other parameters areh/D52.0 and vc /D

FIG. 2. Coherent–incoherent transition vsh: P(t) for bD50.1 andvc /D
50.25.
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50.25. At low temperature,bD50.5, there is strong coher
ent character inP(t). The coherent component becomes le
for a higher temperature ofbD50.2, and there is barely an
coherence left for the still higher temperature ofbD50.06.
At the highest temperature in Fig. 3,bD50.02, P(t) dis-
plays totally incoherent dynamics.

3. Along the vc-axis

This is a less obvious axis for observing the coheren
incoherent transition, but the most interesting one. For r
sons which become clear below, thevc-axis covers severa
important dynamic aspects and is crucial for both identify
the coherent–incoherent transition and calculating the
constant. Figure 4 showsP(t) at bD50.5 andh/D520.0,
for severalvc’s. The trend is very clear: for the smallestvc

in the figure,vc /D50.025, P(t) shows strongly coheren
character. The coherence becomes less prominent asvc /D is

FIG. 3. Coherent–incoherent transition vsT: P(t) for h/D50.1 and
vc /D50.25.

FIG. 4. Coherent–incoherent transition vsvc : P(t) for h/D520 andbD
50.5.
s

o
a-

te

increased to 0.1, and has almost disappeared forvc /D
50.25. Forvc /D54, P(t) exhibits complete incoherent dy
namics.

It is more illustrative to look at the flux-side correlatio
function, Cf s(t), for the above cases, especially fro
vc /D50.1 to vc /D51 where the coherent to incohere
transition is not so obvious. Figure 5~a! showsCf s(t) for the
casevc /D50.1 in Fig. 4. ~The correlation function was
multiplied by the factorQre

bEa/D, where

Qr5tr@ uF1&^F1ue2b~ĤB2Ĥc!#5QB expFb(
j

cj
2

2v j
2G ,

~4.7a!

is the reactant’s partition function withQB the partition func-
tion for the harmonic bath, and

(
j

cj
2

2v j
2

5
h

2
5Ea , ~4.7b!

is the usual activation energy in the infinite bath limit.! Be-
causeCf s(t) is an odd function of time, it starts from zero a
t50, and quickly reaches its maximum by a time of;b\
(bD in terms of the units here!.32 After that, it is seen that
the flux displays sizable coherent recrossings of the divid
surface. One can see from the second to the third peak
the period of oscillation agrees approximately with the R
period in Eq. ~4.6!. On the other hand, Fig. 5~b! shows
Cf s(t) for a larger characteristic frequency, i.e. thevc /D
50.25 case in Fig. 4, and it is seen that the coherence fea
is mostly quenched by the bath. At longer time,Cf s(t)
reaches a plateau corresponding to a rate constant th
significantly smaller than the golden-rule prediction, b
agrees very well with Zusman’s model.34 Figure 5~c! shows
Cf s(t) for an even largervc (vc /D51), and here it is clear
that the dynamics is incoherent. Again, there are recross
of the dividing surface and the rate constant agrees with Z
man’s model34 instead of the golden-rule result. Finally, Fig
5~d! showsCf s(t) for the largest characteristic frequency
Fig. 4, vc /D54, and it is a classic example of a ‘‘direct’
reaction36 where no hint of recrossing is present. Natural
the rate constant in this case agrees very well with
golden-rule prediction.

Thus, the physics along thevc-axis is as follows: when
vc starts from zero and gradually increases, the relaxatio
the bath is extremely slow, unable to destroy the coher
motion of the two level system. Asvc becomes larger, the
response of bath becomes faster so that the bath grad
participates in the decoherence mechanism. The first in
herence regime appears, however, still at quite smallvc .
This is the regime where the collective bath motion is slow
or at least at the same timescale of the two level system
a result, the slow diffusive motion of the bath manifest its
into the overall dynamics, a phenomenon observed fr
experiment37 and theoretically predicted by Zusman nea
two decades ago.34 Whenvc is large enough, the timescal
separation between the bath and the two level system is l
enough for the dynamics to become transition state the
like and well described by the golden-rule.
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FIG. 5. Flux-side correlation functionCf s(t) for bD50.5 andh/D520, and the characteristic frequencyvc is: ~a! vc /D50.1; ~b! vc /D50.25; ~c!
vc /D51; and~d! vc /D54.
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4. Comparison with the noninteracting-blip
approximation

The so-called noninteracting-blip approximatio
~NIBA !17 is a useful approximation in studying the spi
boson problem. It gives the correct limit for both the extrem
weak coupling regime~coherence! and the golden-rule re
gime ~incoherence!. Based on this, it is argued17 that ~for the
Ohmic spectral density in particular! NIBA may give quali-
tatively correct description of spin-boson dynamics ove
broad parameter space. For an Ohmic spectral density
an exponential cutoff, it is indeed found from Monte Car
path integral simulations20 and LSC-IVR calculation12 that
the NIBA gives correct results for several choices of para
eters and predicts correctly the coherent–incoherent tra
tion.

A different situation is expected for the Debye spect
density due to its much broader spectral range. The ab
two limiting cases should still hold, but the transition regim
may be more complicated. For example, it is known t
NIBA, bearing the spirit of the first-order perturbatio
theory,38 cannot describe Zusman-type dynamics of Fig
and Fig. 5~b! and 5~c!. It is also reasonable to believe th
e
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NIBA will fail to describe recrossing dynamics from an
other causes.

Figure 6 compares LSC-IVR results with NIBA for thre
different couplings (h). The other two parameters used
the calculation arebD50.5 andvc /D510. For the smallest
coupling in the figure,h/D50.1, both LSC-IVR and NIBA
predict coherent dynamics, and they agree well with e
other. On the other hand, both LSC-IVR and NIBA pred
incoherent dynamics for the largest coupling in Fig. 6,h/D
520, and the fitted rates agree well with the golden-r
prediction. The problem occurs for the intermediate co
pling, h/D51, where NIBA predicts coherent dynamics b
LSC-IVR predicts, after a short transient time, incohere
relaxation.

Again, we seek the help from the flux-side correlati
function,Cf s(t). Figure 7 showsCf s(t) for theh/D51 case
of Fig. 6, and it becomes immediately apparent that ther
significant recrossing dynamics~in fact it is in the so-called
energy-diffusion regime!: by tD.bD Cf s(t) has reached its
maximum, but the coupling to the bath is not strong enou
to prevent flux from recrossing the dividing surface.
longer time, a plateau is reached that gives a rate cons
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significantly below the golden-rule prediction, a typical r
sult for the energy-diffusion regime. NIBA, on the oth
hand, always predicts the golden-rule rate~if the rate exists!
and cannot describe such recrossing dynamics. One exp
that for the spin-boson system with a more complicated sp
tral density, such as those that exhibit glassy behavior, NI
would be an even worse approximation in the cohere
incoherent transition regime.

B. The rate constant calculation

The rate constant is well-defined only if the populatio
spin correlation functionP(t) exhibits exponential relax
ation. One can fit it to an exponential forme2at to obtain the
rate constant k ~here k5a/2), as have been don
previously.20,12 In practice, however, we found it more con

FIG. 6. Comparison of the LSC-IVR simulation with the NIBA result: Th
solid line and the open circle correspond to the LSC-IVR and NIBA res
for h/D520, respectively; the dashed line and the square correspond t
LSC-IVR and NIBA result forh/D51, respectively; the dot-dashed lin
and the triangle correspond to the LSC-IVR and NIBA result forh/D
50.1, respectively. The other parameters used in the calculation arebD
50.5 andvc /D510.

FIG. 7. Flux-side correlation functionCf s(t) for bD50.5 andh/D51, and
vc /D510.
cts
c-
A
–

-

venient to use the flux correlation function formalism, Eq
~2.17!–~2.20!, to obtain the rate constant directly. The corr
sponding language for a well-defined rate constant is that
flux-side correlation functionCf s(t) can reach a stable pla
teau in the long time limit, and the rate is given simply a

k~T!5
Cf s~ tp!

Qr~T!
, ~4.8!

wheretp is the plateau time andQr(T) is the reactant’s par-
tition function defined in Eq.~4.7!. From the point of view of
the flux correlation function, there are two major class
where one can identify a rate constant: the ‘‘direct’’ reacti
and the ‘‘indirect’’ reaction. For the former class,Cf s(t)
reaches its plateau in a time;b\ ~or bD in the units here!
and stays at that plateau; whereas for the latter class,Cf s(t)
still reaches its maximum at time;b\, may or may not
have a plateau, and then decreases to a smaller valu
might rise and decrease again several times, before fin
reaching a stable plateau. Both of these two classes h
been observed before for small gas-phase reactions,36,39–41

and it is known that for the ‘‘direct’’ reaction case quantu
transition state theory is a very good approximation for
rate constant.

For nonadiabatic transitions in the spin-boson syste
the corresponding quantum transition state theory is
golden-rule:42–44

kg5bD2E
2`

`

dRexpF2
4

pE0

`

dv

3
J~v!

v2

cosh~bv/2!2cosh~ iRbv!

sinh~bv/2! G . ~4.9!

With the saddle point approximation for the integral ov
R,43–46 the expression takes the following simpler form:

kg5
pD2

A2*0
`dv @J~v!/sinh~bv/2!#

3expF2
4

p
E

0

`

dv
J~v!

v2
tanh~bv/4!G . ~4.10!

In the high temperature~small b) and/or small frequency
limit, the further approximations tanh(bv/4).bv/4 and
sinh(bv/2).bv/2 can be made so that one obtains t
‘‘classical’’ golden-rule formula

kg,CL5D2Apb

4Ea
e2bEa, ~4.11a!

where the activation energy is given by

Ea5
1

pE0

`

dv
J~v!

v
. ~4.11b!

For the Debye spectral density,Ea is equal toh/2 as men-
tioned in Eq.~4.7b!.

The only existing theoretical model that accounts for
crossing dynamics is Zusman’s solvent dynamic model,34,23

lt
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where the diffusive motion of the bath is taken into acco
as a dynamical correction and the rate constant is given

kz5
D2Abp/4Eae2bEa

11D2tL ~p/Ea!
, ~4.12!

andtL51/vc for the Debye spectral density. It is easy to s
that in the limit of the extreme fast bath motion,tL /D!1,
the Zusman rate in Eq.~4.12! reduces to the ‘‘classical’’
golden-rule rate in Eq.~4.11a!. Therefore, the limitation of
Zusman’s model should be the same as the ‘‘classic
golden-rule, namely, high temperature and/or small cha
teristic frequencyvc . Although the smallvc requirement is
naturally satisfied for most of the Zusman-type process
caution must be taken in justifying the high temperature
quirement.

Based on the above analysis, we summarize the L
IVR simulation results for the three sub-sections.

1. The golden-rule rate limit

This limit occurs when the couplingh and characteristic
frequencyvc are sufficiently large. The temperature shou
not be too low, i.e., the perturbation parameterbD should be
sufficiently smaller than 1. On the other hand, to ensure
process is an activated one, the exponential parameterbEa

should be sufficiently large. Figure 8 is an Arrhenius plot
the calculated thermal rate constants in comparison with
golden-rule results, and they are in very good agreement
mentioned above, this agreement is expected for this limi
case.

2. The Zusman rate limit

As discussed earlier, the Zusman’s model applies w
the collective bath motion is slow compared with the moti
of the two level system. The other requirements are sim
to those in the golden-rule limit, i.e., the temperature sho
be high enough and the process should be an activated
Figure 9 shows the rate constants ath/D520 and bD

FIG. 8. Arrhenius plot of the thermal rate constant ath/D520 andvc /D
55: The solid line is the golden-rule result, and the circles are results f
LSC-IVR simulation.
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50.6, versus the scaled relaxation time,tLD5D/vc . The
solid line is from Zusman’s model, Eq.~4.12!, whereas the
solid circles are results from the LSC-IVR simulatio
Again, they are in excellent agreement in this limiting ca

3. The ‘‘turnover’’ curve

This is similar to the Kramers turnover phenomenon o
served for a one-dimensional double well linearly coupled
an infinite bath of harmonic oscillators. The parameter t
determines the turnover is the coupling strengthh. Whenh
is extremely small, the flux correlation function displays c
herent oscillations and cannot reach a plateau, and the
constant is not defined. Ash increases, the coupling of th
bath will eventually damp the coherent motion of the tw
level system. Although there is still significant recrossi
flux, Cf s(t) will reach a stable plateau in a longer time. Su
a regime is called the energy-diffusion regime because
ergy exchange is the dominant factor. The rate constan
this regime is smaller than the transition state theory~TST!
prediction. Ash becomes even larger, the recrossing fl
becomes less and the rate begins to approach the TST
~the so-called spatial diffusion regime!. However,h is also
proportional to the activation energy so the TST rate cons
tends to decrease with increase inh. Naturally, there is a
‘‘turnover’’ in the absolute rate constant along theh-axis.

Figure 10 shows the calculated rate constants versuh
for bD50.5 andvc /D54. The turnover character is appa
ent. There is no analytic theory at present that explains s
feature for the nonadiabatic transition process in the c
densed phase. Our feeling is that this theoretical appro
should be similar to the quantum turnover theory47 that has
been proven successful in treating the double well/infin
bath problem, and should reduce to the golden-rule form
in the spatial diffusion regime.

V. CONCLUDING REMARKS

In this paper, a linearized approximation to the semicl
sical initial value representation~LSC-IVR! has been used to

m

FIG. 9. Rate constantk/D vs D/vc at h/D520 andbD50.6: The solid line
is the Zusman result, and the circles are results from LSC-IVR simulat
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study the spin-boson system with a Debye spectral den
The dynamically consistent treatment of electronic a
nuclear degrees of freedom13,14 is used to map the discret
spin-boson Hamiltonian into a continuous form, on whi
classical dynamics simulation is possible. To our knowled
this is the first thorough numerical investigation of the sp
boson problem that covers essentially the complete par
eter space, and indeed several interesting features have
observed, for the first time, from our simulation.

To summarize our results, a rough sketch of the thr
dimensional phase diagram~with the three axes being th
T-axis, theh-axis, and thevc-axis! can be drawn as follows
Near the origin of the three axes, the spin-boson system
hibits coherent motion. As the phase point moves away fr
the origin, the overall dynamics undergoes coherent to in
herent transition. The exact cross-over position for
coherent–incoherent transition is a function of all three va
ables,T, h, and vc , since such transitions have been o
served along all three axes. In the incoherent regime r
after the coherent–incoherent cross-over, recrossings flu
present to some extent and thus gives a rate constant sm
than the transition state theory prediction. Until now, t
only theoretical model that incorporates recrossing effect
Zusman’s dynamic model,34,23which explains the dynamica
behavior along thevc-axis. Recrossings also exist along t
other two axes and cover a broad parameter space~in fact,
the parameter space that is most relevant to the chem
interest! and thus deserve more theoretical work. Only in t
regime far from the origin does the incoherent relaxat
give the transition state theory rate constant.

The LSC-IVR, together with the Meyer–Miller repre
sentation, offers a practical approach for simulating el
tronically nonadiabatic dynamics in condensed phase
tems. Although the conclusions drawn in this paper are
the specific case of a Debye spectral density, we beli
most of them still hold for more general spectral densiti
Naturally, for a spectral density that displays complex m
tiple timescales, one expects an even more complica

FIG. 10. Rate constantsk/D ~solid circles! as a function of coupling param
eterh/D at bD50.5 andvc /D54. The solid line is intended simply as
guide to the eye.
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coherent–incoherent transition for then-level system and a
small possibility for the golden-rule formula to describe t
rate accurately.
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